cacoshf, cacosh, cacoshl
|
Defined in header
<complex.h>
|
||
| (1) | (since C99) | |
| (2) | (since C99) | |
| (3) | (since C99) | |
|
Defined in header
<tgmath.h>
|
||
|
#define acosh( z )
|
(4) | (since C99) |
z
with branch cut at values less than 1 along the real axis.
z
has type
long
double
complex
,
cacoshl
is called. if
z
has type
double
complex
,
cacosh
is called, if
z
has type
float
complex
,
cacoshf
is called. If
z
is real or integer, then the macro invokes the corresponding real function (
acoshf
,
acosh
,
acoshl
). If
z
is imaginary, then the macro invokes the corresponding complex number version and the return type is complex.
Contents |
Parameters
| z | - | complex argument |
Return value
The complex arc hyperbolic cosine of
z
in the interval
[0; ∞)
along the real axis and in the interval
[−iπ; +iπ]
along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- cacosh ( conj ( z ) ) == conj ( cacosh ( z ) )
-
If
zis±0+0i, the result is+0+iπ/2 -
If
zis+x+∞i(for any finite x), the result is+∞+iπ/2 -
If
zis+x+NaNi(for non-zero finite x), the result isNaN+NaNiand FE_INVALID may be raised. -
If
zis0+NaNi, the result isNaN±iπ/2, where the sign of the imaginary part is unspecified -
If
zis-∞+yi(for any positive finite y), the result is+∞+iπ -
If
zis+∞+yi(for any positive finite y), the result is+∞+0i -
If
zis-∞+∞i, the result is+∞+3iπ/4 -
If
zis+∞+∞i, the result is+∞+iπ/4 -
If
zis±∞+NaNi, the result is+∞+NaNi -
If
zisNaN+yi(for any finite y), the result isNaN+NaNiand FE_INVALID may be raised. -
If
zisNaN+∞i, the result is+∞+NaNi -
If
zisNaN+NaNi, the result isNaN+NaNi
Notes
Although the C standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".
Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic cosine is acosh z = ln(z + √ z+1 √ z-1 )
For any z, acosh(z) =| √ z-1 |
| √ 1-z |
Example
#include <stdio.h> #include <complex.h> int main(void) { double complex z = cacosh(0.5); printf("cacosh(+0.5+0i) = %f%+fi\n", creal(z), cimag(z)); double complex z2 = conj(0.5); // or cacosh(CMPLX(0.5, -0.0)) in C11 printf("cacosh(+0.5-0i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2)); // in upper half-plane, acosh(z) = i*acos(z) double complex z3 = casinh(1+I); printf("casinh(1+1i) = %f%+fi\n", creal(z3), cimag(z3)); double complex z4 = I*casin(1+I); printf("I*asin(1+1i) = %f%+fi\n", creal(z4), cimag(z4)); }
Output:
cacosh(+0.5+0i) = 0.000000-1.047198i cacosh(+0.5-0i) (the other side of the cut) = 0.500000-0.000000i casinh(1+1i) = 1.061275+0.666239i I*asin(1+1i) = -1.061275+0.666239i
References
- C11 standard (ISO/IEC 9899:2011):
-
- 7.3.6.1 The cacosh functions (p: 192)
-
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
-
- G.6.2.1 The cacosh functions (p: 539-540)
-
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
-
- 7.3.6.1 The cacosh functions (p: 174)
-
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
-
- G.6.2.1 The cacosh functions (p: 474-475)
-
- G.7 Type-generic math <tgmath.h> (p: 480)
See also
|
(C99)
(C99)
(C99)
|
computes the complex arc cosine
(function) |
|
(C99)
(C99)
(C99)
|
computes the complex arc hyperbolic sine
(function) |
|
(C99)
(C99)
(C99)
|
computes the complex arc hyperbolic tangent
(function) |
|
(C99)
(C99)
(C99)
|
computes the complex hyperbolic cosine
(function) |
|
(C99)
(C99)
(C99)
|
computes inverse hyperbolic cosine (
arcosh(x)
)
(function) |
|
C++ documentation
for
acosh
|
|