erfc, erfcf, erfcl
From cppreference.net
Common mathematical functions
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Defined in header
<math.h>
|
||
|
float
erfcf
(
float
arg
)
;
|
(1) | (since C99) |
|
double
erfc
(
double
arg
)
;
|
(2) | (since C99) |
|
long
double
erfcl
(
long
double
arg
)
;
|
(3) | (since C99) |
|
Defined in header
<tgmath.h>
|
||
|
#define erfc( arg )
|
(4) | (since C99) |
1-3)
Computes the
complementary error function
of
arg
, that is
1.0
-
erf
(
arg
)
, but without loss of precision for large
arg
.
4)
Type-generic macro: If
arg
has type
long
double
,
erfcl
is called. Otherwise, if
arg
has integer type or the type
double
,
erfc
is called. Otherwise,
erfcf
is called.
Contents |
Parameters
| arg | - | floating-point value |
Return value
If no errors occur, value of the complementary error function of arg , that is \(\frac{2}{\sqrt{\pi} }\int_{arg}^{\infty}{e^{-{t^2} }\mathsf{d}t}\)| 2 |
| √ π |
arg e -t 2
d t or \({\small 1-\operatorname{erf}(arg)}\) 1-erf(arg) , is returned.
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in
math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is +∞, +0 is returned.
- If the argument is -∞, 2 is returned.
- If the argument is NaN, NaN is returned.
Notes
For the IEEE-compatible type
double
, underflow is guaranteed if
arg
>
26.55
.
Example
Run this code
#include <math.h> #include <stdio.h> double normalCDF(double x) // Phi(-∞, x) aka N(x) { return erfc(-x / sqrt(2)) / 2; } int main(void) { puts("normal cumulative distribution function:"); for (double n = 0; n < 1; n += 0.1) printf("normalCDF(%.2f) %5.2f%%\n", n, 100 * normalCDF(n)); printf("special values:\n" "erfc(-Inf) = %f\n" "erfc(Inf) = %f\n", erfc(-INFINITY), erfc(INFINITY)); }
Output:
normal cumulative distribution function: normalCDF(0.00) 50.00% normalCDF(0.10) 53.98% normalCDF(0.20) 57.93% normalCDF(0.30) 61.79% normalCDF(0.40) 65.54% normalCDF(0.50) 69.15% normalCDF(0.60) 72.57% normalCDF(0.70) 75.80% normalCDF(0.80) 78.81% normalCDF(0.90) 81.59% normalCDF(1.00) 84.13% special values: erfc(-Inf) = 2.000000 erfc(Inf) = 0.000000
References
- C23 standard (ISO/IEC 9899:2024):
-
- 7.12.8.2 The erfc functions (p: 249-250)
-
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
-
- F.10.5.2 The erfc functions (p: 525)
- C17 standard (ISO/IEC 9899:2018):
-
- 7.12.8.2 The erfc functions (p: 249-250)
-
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
-
- F.10.5.2 The erfc functions (p: 525)
- C11 standard (ISO/IEC 9899:2011):
-
- 7.12.8.2 The erfc functions (p: 249-250)
-
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
-
- F.10.5.2 The erfc functions (p: 525)
- C99 standard (ISO/IEC 9899:1999):
-
- 7.12.8.2 The erfc functions (p: 230)
-
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
-
- F.9.5.2 The erfc functions (p: 462)
See also
|
(C99)
(C99)
(C99)
|
computes error function
(function) |
|
C++ documentation
for
erfc
|
|
External links
| Weisstein, Eric W. "Erfc." From MathWorld — A Wolfram Web Resource. |