Namespaces
Variants

std:: find, std:: find_if, std:: find_if_not

From cppreference.net
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Defined in header <algorithm>
(1)
template < class InputIt, class T >
InputIt find ( InputIt first, InputIt last, const T & value ) ;
(constexpr since C++20)
(until C++26)
template < class InputIt, class T = typename std:: iterator_traits

< InputIt > :: value_type >

constexpr InputIt find ( InputIt first, InputIt last, const T & value ) ;
(since C++26)
(2)
template < class ExecutionPolicy, class ForwardIt, class T >

ForwardIt find ( ExecutionPolicy && policy,

ForwardIt first, ForwardIt last, const T & value ) ;
(since C++17)
(until C++26)
template < class ExecutionPolicy,

class ForwardIt, class T = typename std:: iterator_traits
< ForwardIt > :: value_type >
ForwardIt find ( ExecutionPolicy && policy,

ForwardIt first, ForwardIt last, const T & value ) ;
(since C++26)
template < class InputIt, class UnaryPred >
InputIt find_if ( InputIt first, InputIt last, UnaryPred p ) ;
(3) (constexpr since C++20)
template < class ExecutionPolicy, class ForwardIt, class UnaryPred >

ForwardIt find_if ( ExecutionPolicy && policy,

ForwardIt first, ForwardIt last, UnaryPred p ) ;
(4) (since C++17)
template < class InputIt, class UnaryPred >
InputIt find_if_not ( InputIt first, InputIt last, UnaryPred q ) ;
(5) (since C++11)
(constexpr since C++20)
template < class ExecutionPolicy, class ForwardIt, class UnaryPred >

ForwardIt find_if_not ( ExecutionPolicy && policy,

ForwardIt first, ForwardIt last, UnaryPred q ) ;
(6) (since C++17)

Returns an iterator to the first element in the range [ first , last ) that satisfies specific criteria (or last if there is no such iterator).

1) find searches for an element equal to value (using operator== ).
3) find_if searches for an element for which predicate p returns true .
5) find_if_not searches for an element for which predicate q returns false .
2,4,6) Same as (1,3,5) , but executed according to policy .
These overloads participate in overload resolution only if all following conditions are satisfied:

std:: is_execution_policy_v < std:: decay_t < ExecutionPolicy >> is true .

(until C++20)

std:: is_execution_policy_v < std:: remove_cvref_t < ExecutionPolicy >> is true .

(since C++20)

Contents

Parameters

first, last - the pair of iterators defining the range of elements to examine
value - value to compare the elements to
policy - the execution policy to use
p - unary predicate which returns ​ true for the required element.

The expression p ( v ) must be convertible to bool for every argument v of type (possibly const) VT , where VT is the value type of InputIt , regardless of value category , and must not modify v . Thus, a parameter type of VT & is not allowed , nor is VT unless for VT a move is equivalent to a copy (since C++11) . ​

q - unary predicate which returns ​ false for the required element.

The expression q ( v ) must be convertible to bool for every argument v of type (possibly const) VT , where VT is the value type of InputIt , regardless of value category , and must not modify v . Thus, a parameter type of VT & is not allowed , nor is VT unless for VT a move is equivalent to a copy (since C++11) . ​

Type requirements
-
InputIt must meet the requirements of LegacyInputIterator .
-
ForwardIt must meet the requirements of LegacyForwardIterator .
-
UnaryPredicate must meet the requirements of Predicate .

Return value

The first iterator it in the range [ first , last ) satisfying the following condition or last if there is no such iterator:

1,2) * it == value is true .
3,4) p ( * it ) is true .
5,6) q ( * it ) is false .

Complexity

Given N as std:: distance ( first, last ) :

1,2) At most N comparisons with value using operator== .
3,4) At most N applications of the predicate p .
5,6) At most N applications of the predicate q .

Exceptions

The overloads with a template parameter named ExecutionPolicy report errors as follows:

  • If execution of a function invoked as part of the algorithm throws an exception and ExecutionPolicy is one of the standard policies , std::terminate is called. For any other ExecutionPolicy , the behavior is implementation-defined.
  • If the algorithm fails to allocate memory, std::bad_alloc is thrown.

Possible implementation

find (1)
template<class InputIt, class T = typename std::iterator_traits<InputIt>::value_type>
constexpr InputIt find(InputIt first, InputIt last, const T& value)
{
    for (; first != last; ++first)
        if (*first == value)
            return first;
    return last;
}
find_if (3)
template<class InputIt, class UnaryPred>
constexpr InputIt find_if(InputIt first, InputIt last, UnaryPred p)
{
    for (; first != last; ++first)
        if (p(*first))
            return first;
    return last;
}
find_if_not (5)
template<class InputIt, class UnaryPred>
constexpr InputIt find_if_not(InputIt first, InputIt last, UnaryPred q)
{
    for (; first != last; ++first)
        if (!q(*first))
            return first;
    return last;
}

Notes

If C++11 is not available, an equivalent to std::find_if_not is to use std::find_if with the negated predicate.

template<class InputIt, class UnaryPred>
InputIt find_if_not(InputIt first, InputIt last, UnaryPred q)
{
    return std::find_if(first, last, std::not1(q));
}
Feature-test macro Value Std Feature
__cpp_lib_algorithm_default_value_type 202403 (C++26) List-initialization for algorithms ( 1,2 )

Example

The following example finds numbers in given sequences.

#include <algorithm>
#include <array>
#include <cassert>
#include <complex>
#include <initializer_list>
#include <iostream>
#include <vector>
bool is_even(int i)
{
    return i % 2 == 0;
}
void example_contains()
{
    const auto haystack = {1, 2, 3, 4};
    for (const int needle : {3, 5})
        if (std::find(haystack.begin(), haystack.end(), needle) == haystack.end())
            std::cout << "haystack does not contain " << needle << '\n';
        else
            std::cout << "haystack contains " << needle << '\n';
}
void example_predicate()
{
    for (const auto& haystack : {std::array{3, 1, 4}, {1, 3, 5}})
    {
        const auto it = std::find_if(haystack.begin(), haystack.end(), is_even);
        if (it != haystack.end())
            std::cout << "haystack contains an even number " << *it << '\n';
        else
            std::cout << "haystack does not contain even numbers\n";
    }
}
void example_list_init()
{
    std::vector<std::complex<double>> haystack{{4.0, 2.0}};
#ifdef __cpp_lib_algorithm_default_value_type
    // T gets deduced making list-initialization possible
    const auto it = std::find(haystack.begin(), haystack.end(), {4.0, 2.0});
#else
    const auto it = std::find(haystack.begin(), haystack.end(), std::complex{4.0, 2.0});
#endif
    assert(it == haystack.begin());  
}
int main()
{
    example_contains();
    example_predicate();
    example_list_init();
}

Output:

haystack contains 3
haystack does not contain 5
haystack contains an even number 4
haystack does not contain even numbers

Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
LWG 283 C++98 T was required to be EqualityComparable , but
the value type of InputIt might not be T
removed the requirement

See also

finds the first two adjacent items that are equal (or satisfy a given predicate)
(function template)
finds the last sequence of elements in a certain range
(function template)
searches for any one of a set of elements
(function template)
finds the first position where two ranges differ
(function template)
searches for the first occurrence of a range of elements
(function template)
finds the first element satisfying specific criteria
(algorithm function object)